New honeyguide paper published

Aug 10, 2013

Honeyguides and other brood parasitic birds are famous for tricking host parents by laying eggs that mimic their own. Honeyguide eggs mimic host eggs in size yet, surprisingly, bee-eater hosts are undiscriminating and readily accept mismatched eggs. This study shows that honeyguide egg size adaptation has probably rather evolved to trick other honeyguides, not host parents: honeyguides selectively puncture any mismatched egg already present in the nest when they lay their own, lest it be the offspring of another honeyguide female and brutally kill their own chick when it hatches.
Read the full paper in Biology Letters [Open Access], or Ed Yong’s excellent article about the study. Here are some other nice articles and podcasts online covering this study: The Behaviour, Ecology & Evolution Podcast | Take Part blog | Earth Times.

News

Evolutionary Biology Crash Course

Tanmay Dixit was a member of a team organising and lecturing in the inaugural Evolutionary Biology Crash Course. This course, aimed at undergraduate or early-postgraduate students, teaches evolutionary principles to students who have had limited opportunities to be exposed to evolutionary ideas. The course is funded by the Equal Opportunities Initiative Fund of the European Society of Evolutionary Biology (ESEB). Tanmay presented lectures on behavioural ecology and evolution, focussing on kin selection, coevolution, and parasitism. Over 700 students, with the vast majority from the global South, attended the course, which was a resounding success!

read more

New paper on visual complexity & mimicry

Our paper “Visual complexity of egg patterns predicts egg rejection according to Weber’s Law” has just been published in the journal Proceedings of the Royal Society B. This research was led by Tanmay Dixit, and carried out together with Andrei Apostol, Kuan-Chi Chen, Tony Fulford, Chris Town and Claire Spottiswoode, in a collaboration between biologists and computer scientists. We used machine learning to compute a biologically-relevant measure of egg pattern complexity, and combined this with field experiments in Zambia to investigate how complexity evolves in an arms race between host egg signatures (by tawny-flanked prinias) and parasitic egg forgeries (by cuckoo finches).

read more

Fieldwork and teaching at APLORI, Nigeria

Dr Gabriel Jamie is continuing his fieldwork on the evolution of polymorphisms in cisticolas and prinias in Nigeria, where he is also a teaching fellow at the AP Leventis Ornithological Research Institute (APLORI). The image shows the 2022 APLORI MSc class during the Global Birding Big Day on 14 May. The team recorded 135 species while walking around the nature reserve surrounding the institute.

read more

New paper on the genetics of cuckoo finch egg mimicry

Our paper “Genetic architecture facilitates then constrains adaptation in a host-parasite coevolutionary arms race” has been published in the Proceedings of the National Academy of Sciences of the USA. In it, we address the long-standing puzzle of how exquisite mimicry of the eggs of several different host species can evolve within a single species of brood-parasitic bird. We show that in cuckoo finches in Zambia, egg mimicry of different host egg phenotypes is maternally inherited, which allows mothers to transmit host-specific adaptations to their daughters irrespective of which host species the father was raised by. This study was a team effort from colleagues at the University of Cambridge and University of Cape Town (Claire Spottiswoode, Wenfei Tong, Gabriel Jamie), at Boston University (Katherine Stryjewski, Jeff DaCosta, Evan Kuras and Michael Sorenson) and in the Choma community in Zambia (Ailsa Green, Silky Hamama, Ian Taylor and Collins Moya).

read more